Tag - DNA replication

VACANCY: LMS 3.5-year Studentship

Project Title: Development of high throughput assay for screening of novel DNA replication inhibitors for therapeutic purposes Supervisors: Professor Christian Speck, Professor David Rueda Funding: Tuition fees plus £21,000 pa stipend for 3.5 years Date posted: 09 July 2021 Closing date: 04 August 2021 The student will develop a fluorescence-based assay to identify novel DNA replication inhibitors for anti-cancer therapy.  Inhibitors will be consequently characterised for their impact on the multi-step DNA replication process and on cancer cell growth. This interdisciplinary project will train the student in biochemistry, biophysics and drug screening. Project details | LMS 3.5-year Studentships | Apply

New paper on the molecular mechanism in the licensing of eukaryotic replication origins

Feng, X., Noguchi, Y., Barbon, M., Stillman, B., Speck, C., Li, H. (2021). The structure of ORC-Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Nature Communications 12, 3883. Abstract | Full Text |

New paper on the structural mechanism of helicase loading

Yuan, Z., Schneider, S., Dodd, T., Riera, A., Bai, L., Yan, C., Magdalou, I., Ivanov, I., Stillman, B., Li, H., Speck, C. (2020). Structural mechanism of helicase loading onto replication origin DNA by ORC-Cdc6. Proceedings of the National Academy of Sciences of the United States of America 117, 17747-17756. Abstract | Full Text |

New paper proposes lagging-strand DNA extrusion mechanism

Noguchi, Y., Yuan, Z., Bai, L., Schneider, S., Zhao, G., Stillman, B., Speck, C., Li, H. (2017). Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model. Proceedings of the National Academy of Sciences of the United States of America 114, E9529-E9538. Abstract | Full text |

New paper shows Cdc6 ATPase activity promotes DNA replication

Chang, F., Riera, A., Evrin, C., Sun, J., Li, H., Speck, C., Weinreich, M. (2015). Cdc6 ATPase activity disengages Cdc6 from the pre-replicative complex to promote DNA replication. eLife 4, e05759.
Abstract | Full text | Biomedical Picture of the Day | MRC Clinical Sciences Centre News | Imperial College London News |

New paper on regulation of loading of MCM2-7 onto DNA

Samel, S. A., Fernández-Cid, A., Sun, J., Riera, A., Tognetti, S., Herrera, C., Li, H., Speck, C. (2014). A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2–7 onto DNA. Genes & Development 28, 1653-1666.
Abstract | Imperial College London News |